nistk233
        
        extends sect233k1
    
    
            
            in package
            
        
    
    
    
Curves over y^2 + x*y = x^3 + a*x^2 + b
Table of Contents
Properties
- $a : object
- Cofficient for x^1
- $b : object
- Cofficient for x^0
- $doubles : array<string|int, object>
- Doubles
- $factory : BinaryField
- Binary Field Integer factory
- $modulo : BigInteger
- The modulo
- $one : object
- The number one over the specified finite field
- $order : BigInteger
- The Order
- $p : object
- Base Point
- $naf : array<string|int, int>
- NAF Points
Methods
- __construct() : mixed
- addPoint() : array<string|int, FiniteField>
- Adds two points on the curve
- convertInteger() : object
- Converts a BigInteger to a FiniteField integer
- convertToAffine() : array<string|int, Integer>
- Returns the affine point
- convertToInternal() : array<string|int, Integer>
- Converts an affine point to a jacobian coordinate
- createRandomMultiplier() : FiniteField
- Creates a random scalar multiplier
- derivePoint() : array<string|int, mixed>
- Returns the X coordinate and the derived Y coordinate
- doublePoint() : array<string|int, FiniteField>
- Doubles a point on a curve
- getA() : Integer
- Returns the a coefficient
- getB() : Integer
- Returns the a coefficient
- getBasePoint() : array<string|int, mixed>
- Retrieve the base point as an array
- getLength() : int
- Returns the length, in bits, of the modulo
- getLengthInBytes() : int
- Returns the length, in bytes, of the modulo
- getModulo() : BigInteger
- Returns the modulo
- getOrder() : BigInteger
- Returns the Order
- multiplyAddPoints() : array<string|int, int>
- Multiply and Add Points
- multiplyPoint() : array<string|int, mixed>
- Multiply a point on the curve by a scalar
- negatePoint() : array<string|int, object>
- Negates a point
- randomInteger() : object
- Returns a random integer
- setBasePoint() : mixed
- Set x and y coordinates for the base point
- setCoefficients() : mixed
- Set coefficients a and b
- setModulo() : mixed
- Sets the modulo
- setOrder() : mixed
- Sets the Order
- setReduction() : object
- Use a custom defined modular reduction function
- verifyPoint() : bool
- Tests whether or not the x / y values satisfy the equation
Properties
$a
Cofficient for x^1
    protected
        object
    $a
    
    
    
    
    
$b
Cofficient for x^0
    protected
        object
    $b
    
    
    
    
    
$doubles
Doubles
    protected
        array<string|int, object>
    $doubles
    
    
    
    
    
$factory
Binary Field Integer factory
    protected
        BinaryField
    $factory
    
    
    
    
    
$modulo
The modulo
    protected
        BigInteger
    $modulo
    
    
    
    
    
$one
The number one over the specified finite field
    protected
        object
    $one
    
    
    
    
    
$order
The Order
    protected
        BigInteger
    $order
    
    
    
    
    
$p
Base Point
    protected
        object
    $p
    
    
    
    
    
$naf
NAF Points
    private
        array<string|int, int>
    $naf
    
    
    
    
    
Methods
__construct()
    public
                    __construct() : mixed
    addPoint()
Adds two points on the curve
    public
                    addPoint(array<string|int, mixed> $p, array<string|int, mixed> $q) : array<string|int, FiniteField>
    Parameters
- $p : array<string|int, mixed>
- $q : array<string|int, mixed>
Return values
array<string|int, FiniteField>convertInteger()
Converts a BigInteger to a FiniteField integer
    public
                    convertInteger(BigInteger $x) : object
    Parameters
- $x : BigInteger
Return values
objectconvertToAffine()
Returns the affine point
    public
                    convertToAffine(array<string|int, mixed> $p) : array<string|int, Integer>
    A Jacobian Coordinate is of the form (x, y, z). To convert a Jacobian Coordinate to an Affine Point you do (x / z^2, y / z^3)
Parameters
- $p : array<string|int, mixed>
Return values
array<string|int, Integer>convertToInternal()
Converts an affine point to a jacobian coordinate
    public
                    convertToInternal(array<string|int, mixed> $p) : array<string|int, Integer>
    Parameters
- $p : array<string|int, mixed>
Return values
array<string|int, Integer>createRandomMultiplier()
Creates a random scalar multiplier
    public
                    createRandomMultiplier() : FiniteField
    Return values
FiniteFieldderivePoint()
Returns the X coordinate and the derived Y coordinate
    public
                    derivePoint(mixed $m) : array<string|int, mixed>
    Not supported because it is covered by patents. Quoting https://www.openssl.org/docs/man1.1.0/apps/ecparam.html ,
"Due to patent issues the compressed option is disabled by default for binary curves and can be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at compile time."
Parameters
- $m : mixed
Return values
array<string|int, mixed>doublePoint()
Doubles a point on a curve
    public
                    doublePoint(array<string|int, mixed> $p) : array<string|int, FiniteField>
    Parameters
- $p : array<string|int, mixed>
Return values
array<string|int, FiniteField>getA()
Returns the a coefficient
    public
                    getA() : Integer
    Return values
IntegergetB()
Returns the a coefficient
    public
                    getB() : Integer
    Return values
IntegergetBasePoint()
Retrieve the base point as an array
    public
                    getBasePoint() : array<string|int, mixed>
    Return values
array<string|int, mixed>getLength()
Returns the length, in bits, of the modulo
    public
                    getLength() : int
    Return values
intgetLengthInBytes()
Returns the length, in bytes, of the modulo
    public
                    getLengthInBytes() : int
    Return values
intgetModulo()
Returns the modulo
    public
                    getModulo() : BigInteger
    Return values
BigIntegergetOrder()
Returns the Order
    public
                    getOrder() : BigInteger
    Return values
BigIntegermultiplyAddPoints()
Multiply and Add Points
    public
                    multiplyAddPoints(array<string|int, mixed> $points, array<string|int, mixed> $scalars) : array<string|int, int>
    Parameters
- $points : array<string|int, mixed>
- $scalars : array<string|int, mixed>
Return values
array<string|int, int>multiplyPoint()
Multiply a point on the curve by a scalar
    public
                    multiplyPoint(array<string|int, mixed> $p, Integer $d) : array<string|int, mixed>
    Uses the montgomery ladder technique as described here:
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
Parameters
- $p : array<string|int, mixed>
- $d : Integer
Return values
array<string|int, mixed>negatePoint()
Negates a point
    public
                    negatePoint(array<string|int, mixed> $p) : array<string|int, object>
    Parameters
- $p : array<string|int, mixed>
Return values
array<string|int, object>randomInteger()
Returns a random integer
    public
                    randomInteger() : object
    Return values
objectsetBasePoint()
Set x and y coordinates for the base point
    public
                    setBasePoint(string|Integer $x, string|Integer $y) : mixed
    Parameters
setCoefficients()
Set coefficients a and b
    public
                    setCoefficients(string $a, string $b) : mixed
    Parameters
- $a : string
- $b : string
setModulo()
Sets the modulo
    public
                    setModulo(mixed ...$modulo) : mixed
    Parameters
- $modulo : mixed
setOrder()
Sets the Order
    public
                    setOrder(BigInteger $order) : mixed
    Parameters
- $order : BigInteger
setReduction()
Use a custom defined modular reduction function
    public
                    setReduction(callable $func) : object
    Parameters
- $func : callable
Return values
objectverifyPoint()
Tests whether or not the x / y values satisfy the equation
    public
                    verifyPoint(array<string|int, mixed> $p) : bool
    Parameters
- $p : array<string|int, mixed>